激光熔覆是指以不同的添料方式在被熔覆基体表面上放置被选择的涂层材料经激光辐照使之和基体表面一薄层同时熔化,并快速凝固后形成稀释度极低,与基体成冶金结合的表面涂层,显著改善基层表面的耐磨、耐蚀、耐热、抗氧化及电气特性的工艺方法,从而达到表面改性或修复的目的,既满足了对材料表面特定性能的要求,又节约了大量的贵重元素。

与堆焊、喷涂、电镀和气相沉积相比,激光熔覆具有稀释度小、组织致密、涂层与基体结合好、适合熔覆材料多、粒度及含量变化大等特点,因此激光熔覆技术应用前景十分广阔。

激光增材再制造是以激光熔覆技术为基础(激光熔覆修复),对服役失效零件及误加工零件进行几何形状及力学性能恢复的技术行为。现代工业及国防的许多重大装备生产工艺复杂、工序长、成本高,这些装备在服役的过程中,一些关键零部件往往会由于磨损、腐蚀、疲劳、事故等原因而失效,从而影响设备正常运行使用,如能对这些高附加值零件进行修复再制造,则可以保证设备正常运转、节约成本,创造极大的经济效益。一些零件的加工程序复杂、难度高,容易出现误损伤,许多时候,误加工的零件只能做报废处理,这将造成极大的浪费和损失,对这些误加工的零件进行增材制造修复,可以大大提高零件合格率,缩短生产周期,提高经济效益,挽回损失。激光增材再制造是一种先进的再制造修复手段,该技术热源能量集中,可在对基体性能影响较小的情况下,实现零件的几何形状及力学性能的高质量恢复,采用该技术对服役失效及误加工零部件进行再制造修复,具有很好的现实意义。目前激光增材再制造技术已经在航空发动机、燃气轮机、钢铁冶金、军队伴随保障等领域得到了广泛的应用。

激光增材再制造技术原理与激光3D打印技术相近,但又有其自身的特点。典型的激光增材再制造流程如下:拆解—清洗—分类—检测—判别—再制造修复—(热处理)—后加工—检验。对于拆解清洗后的待再制造件,需要先进行无损检测及寿命评估,然后对于能再制造零件进行再制造修复,接着再进行后热处理及后加工,最后对再制造零件的质量进行检测评价,判定再制造产品是否合格,其中最核心的阶段是修复阶段。同激光3D打印技术相比,激光增材再制造技术还需要关注再制造过程对基体的热损伤、再制造材料同基体的界面、再制造材料同基体的物性匹配等问题,问题更为复杂。对于激光3D打印技术,整个零件都是通过逐点扫描堆积成形的,因此,其制造周期相对较长、成本较高,与此相对,激光增材再制造以失效或者误加工零件为基体,需要恢复的尺寸往往很有限,其制造周期短、成本低,因此,其经济效益和社会效益更加显著。 

激光熔覆与工业中常用的堆焊、热喷涂和等离子喷焊等相比,优点包括:基体与熔覆层结合强度高、热影响区小、熔覆层与基体晶粒细小效率高、节约昂贵材料、可制备梯度功能材料、激光熔覆技术可控性好,易实现自动化控制,覆层质量稳定从当前激光熔覆的应用情况来看,其主要应用于三个方面:

1.对材料的表面改性,如燃汽轮机叶片,轧辊,齿轮等;

2.对产品的表面修复,如转子,模具等。有关资料表明,修复后的部件强度可达到原强度的90%以上,其修复费用不到重置价格的15,更重要的是缩短了维修时间,解决了大型企业重大成套设备连续可靠运行所必须解决的转动部件快速抢修难题。另外,对关键部件表面通过激光熔覆超耐磨抗蚀合金,可以在零部件表面不变形的情况下大大提高零部件的使用寿命;对模具表面进行激光熔覆处理,不仅提高模具强度,还可以降低23的制造成本,缩短45的制造周期。

3. 快速原型制造。利用金属粉末的逐层烧结叠加,快速制造出模型。利用激光熔敷技术快速制造零件的技术,又称作LENS Laser Engineered Net Shaping DLF Direct Laser Fabrication DMD Direct Metal Deposition)、LC Laser Consolidation

熔覆材料:目前应用广泛的激光熔覆材料主要有:镍基、钴基、铁基合金、碳化钨复合材料,陶瓷等材料。